Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: covidwho-2300892

ABSTRACT

Background: Accurate prognosis is important either after acute infection or during long-term follow-up of patients infected by severe acute respiratory syndrome coronavirus 2. This study aims to predict coronavirus disease 2019 (COVID-19) severity based on clinical and biological indicators, and to identify biomarkers for prognostic assessment. Methods: We included 261 Vietnamese COVID-19 patients, who were classified into moderate and severe groups. Disease severity prediction based on biomarkers and clinical parameters was performed by applying machine learning and statistical methods using the combination of clinical and biological data. Results: The random forest model could predict with 97% accuracy the likelihood of COVID-19 patients who subsequently worsened to the severe condition. The most important indicators were interleukin (IL)-6, ferritin and D-dimer. The model could still predict with 92% accuracy after removing IL-6 from the analysis to generalise the applicability of the model to hospitals with limited capacity for IL-6 testing. The five most effective indicators were C-reactive protein (CRP), D-dimer, IL-6, ferritin and dyspnoea. Two different sets of biomarkers (D-dimer, IL-6 and ferritin, and CRP, D-dimer and IL-6) are applicable for the assessment of disease severity and prognosis. The two biomarker sets were further tested through machine learning algorithms and relatively validated on two Danish COVID-19 patient groups (n=32 and n=100). The results indicated that various biomarker sets combined with clinical data can be used for detection of the potential to develop the severe condition. Conclusion: This study provided a simple and reliable model using two different sets of biomarkers to assess disease severity and predict clinical outcomes in COVID-19 patients in Vietnam.

2.
Diagnostics (Basel) ; 13(8)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2301787

ABSTRACT

Shortly after its emergence, Omicron and its sub-variants have quickly replaced the Delta variant during the current COVID-19 outbreaks in Vietnam and around the world. To enable the rapid and timely detection of existing and future variants for epidemiological surveillance and diagnostic applications, a robust, economical real-time PCR method that can specifically and sensitively detect and identify multiple different circulating variants is needed. The principle of target- failure (TF) real-time PCR is simple. If a target contains a deletion mutation, then there is a mismatch with the primer or probe, and the real-time PCR will fail to amplify the target. In this study, we designed and evaluated a novel multiplex RT real-time PCR (MPL RT-rPCR) based on the principle of target failure to detect and identify different variants of SARS-CoV-2 directly from the nasopharyngeal swabs collected from COVID-19 suspected cases. The primers and probes were designed based on the specific deletion mutations of current circulating variants. To evaluate the results from the MPL RT-rPCR, this study also designed nine pairs of primers for amplifying and sequencing of nine fragments from the S gene containing mutations of known variants. We demonstrated that (i) our MPL RT-rPCR was able to accurately detect multiple variants that existed in a single sample; (ii) the limit of detection of the MPL RT-rPCR in the detection of the variants ranged from 1 to 10 copies for Omicron BA.2 and BA.5, and from 10 to 100 copies for Delta, Omicron BA.1, recombination of BA.1 and BA.2, and BA.4; (iii) between January and September 2022, Omicron BA.1 emerged and co-existed with the Delta variant during the early period, both of which were rapidly replaced by Omicron BA.2, and this was followed by Omicron BA.5 as the dominant variant toward the later period. Our results showed that SARS-CoV-2 variants rapidly evolved within a short period of time, proving the importance of a robust, economical, and easy-to-access method not just for epidemiological surveillance but also for diagnoses around the world where SARS-CoV-2 variants remain the WHO's highest health concern. Our highly sensitive and specific MPL RT-rPCR is considered suitable for further implementation in many laboratories, especially in developing countries.

SELECTION OF CITATIONS
SEARCH DETAIL